Xenon discharge tube.jpg
Color lines in a spectral range
Xenon is a chemical element with symbol Xe and atomic number 54. It is a colorless, dense, odorless noble gas found in the Earth's atmosphere in trace amounts. Although generally unreactive, xenon can undergo a few chemical reactions such as the formation of xenon hexafluoroplatinate, the first noble gas compound to be synthesized.

Xenon is used in flash lamps and arc lamps, and as a general anesthetic. The first excimer laser design used a xenon dimer molecule (Xe2) as the lasing medium, and the earliest laser designs used xenon flash lamps as pumps. Xenon is used to search for hypothetical weakly interacting massive particles and as the propellant for ion thrusters in spacecraft.

Naturally occurring xenon consists of eight stable isotopes. More than 40 unstable xenon isotopes undergo radioactive decay, and the isotope ratios of xenon are an important tool for studying the early history of the Solar System. Radioactive xenon-135 is produced by beta decay from iodine-135 (a product of nuclear fission), and is the most significant (and unwanted) neutron absorber in nuclear reactors.

Xenon was discovered in England by the Scottish chemist William Ramsay and English chemist Morris Travers in September 1898, shortly after their discovery of the elements krypton and neon. They found xenon in the residue left over from evaporating components of liquid air. Ramsay suggested the name xenon for this gas from the Greek word ξένον , neuter singular form of ξένος , meaning 'foreign(er)', 'strange(r)', or 'guest'. In 1902, Ramsay estimated the proportion of xenon in the Earth's atmosphere to be one part in 20 million.

During the 1930s, American engineer Harold Edgerton began exploring strobe light technology for high speed photography. This led him to the invention of the xenon flash lamp in which light is generated by passing brief electric current through a tube filled with xenon gas. In 1934, Edgerton was able to generate flashes as brief as one microsecond with this method.

In 1939, American physician Albert R. Behnke Jr. began exploring the causes of "drunkenness" in deep-sea divers. He tested the effects of varying the breathing mixtures on his subjects, and discovered that this caused the divers to perceive a change in depth. From his results, he deduced that xenon gas could serve as an anesthetic. Although Russian toxicologist Nikolay V. Lazarev apparently studied xenon anesthesia in 1941, the first published report confirming xenon anesthesia was in 1946 by American medical researcher John H. Lawrence, who experimented on mice. Xenon was first used as a surgical anesthetic in 1951 by American anesthesiologist Stuart C. Cullen, who successfully used it with two patients.

This page was last edited on 22 February 2018, at 09:04.
Reference: https://en.wikipedia.org/wiki/Xenon under CC BY-SA license.

Related Topics

Recently Viewed