Transmission Control Protocol

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP. Applications that do not require reliable data stream service may use the User Datagram Protocol (UDP), which provides a connectionless datagram service that emphasizes reduced latency over reliability.

During May 1974, the Institute of Electrical and Electronic Engineers (IEEE) published a paper titled A Protocol for Packet Network Intercommunication. The paper's authors, Vint Cerf and Bob Kahn, described an internetworking protocol for sharing resources using packet switching among the nodes, working with Gérard Le Lann to incorporate concepts from the French CYCLADES project. A central control component of this model was the Transmission Control Program that incorporated both connection-oriented links and datagram services between hosts. The monolithic Transmission Control Program was later divided into a modular architecture consisting of the Transmission Control Protocol at the transport layer and the Internet Protocol at the internet layer. The model became known informally as TCP/IP, although formally it was henceforth referred to as the Internet Protocol Suite.

The Transmission Control Protocol provides a communication service at an intermediate level between an application program and the Internet Protocol. It provides host-to-host connectivity at the Transport Layer of the Internet model. An application does not need to know the particular mechanisms for sending data via a link to another host, such as the required packet fragmentation on the transmission medium. At the transport layer, the protocol handles all handshaking and transmission details and presents an abstraction of the network connection to the application.

At the lower levels of the protocol stack, due to network congestion, traffic load balancing, or other unpredictable network behaviour, IP packets may be lost, duplicated, or delivered out of order. TCP detects these problems, requests re-transmission of lost data, rearranges out-of-order data and even helps minimize network congestion to reduce the occurrence of the other problems. If the data still remains undelivered, the source is notified of this failure. Once the TCP receiver has reassembled the sequence of octets originally transmitted, it passes them to the receiving application. Thus, TCP abstracts the application's communication from the underlying networking details.

TCP is used extensively by many applications available by internet, including the World Wide Web (WWW), E-mail, File Transfer Protocol, Secure Shell, peer-to-peer file sharing, and streaming media applications.

TCP is optimized for accurate delivery rather than timely delivery and can incur relatively long delays (on the order of seconds) while waiting for out-of-order messages or re-transmissions of lost messages. Therefore, it is not particularly suitable for real-time applications such as Voice over IP. For such applications, protocols like the Real-time Transport Protocol (RTP) operating over the User Datagram Protocol (UDP) are usually recommended instead.

This page was last edited on 17 May 2018, at 22:58.
Reference: under CC BY-SA license.

Related Topics

Recently Viewed