Transmission Control Protocol

Wiki letter w.svg
The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP. Applications that do not require reliable data stream service may use the User Datagram Protocol (UDP), which provides a connectionless datagram service that emphasizes reduced latency over reliability.

During May 1974, the Institute of Electrical and Electronic Engineers (IEEE) published a paper titled A Protocol for Packet Network Intercommunication.[1] The paper's authors, Vint Cerf and Bob Kahn, described an internetworking protocol for sharing resources using packet switching among the nodes, working with Gérard Le Lann to incorporate concepts from the French CYCLADES project.[2] A central control component of this model was the Transmission Control Program that incorporated both connection-oriented links and datagram services between hosts. The monolithic Transmission Control Program was later divided into a modular architecture consisting of the Transmission Control Protocol at the transport layer and the Internet Protocol at the internet layer. The model became known informally as TCP/IP, although formally it was henceforth referred to as the Internet Protocol Suite.

The Transmission Control Protocol provides a communication service at an intermediate level between an application program and the Internet Protocol. It provides host-to-host connectivity at the transport layer of the Internet model. An application does not need to know the particular mechanisms for sending data via a link to another host, such as the required IP fragmentation to accommodate the maximum transmission unit of the transmission medium. At the transport layer, TCP handles all handshaking and transmission details and presents an abstraction of the network connection to the application typically through a network socket interface.

At the lower levels of the protocol stack, due to network congestion, traffic load balancing, or other unpredictable network behaviour, IP packets may be lost, duplicated, or delivered out of order. TCP detects these problems, requests re-transmission of lost data, rearranges out-of-order data and even helps minimize network congestion to reduce the occurrence of the other problems. If the data still remains undelivered, the source is notified of this failure. Once the TCP receiver has reassembled the sequence of octets originally transmitted, it passes them to the receiving application. Thus, TCP abstracts the application's communication from the underlying networking details.

TCP is used extensively by many applications available by internet, including the World Wide Web (WWW), E-mail, File Transfer Protocol, Secure Shell, peer-to-peer file sharing, and streaming media applications.

TCP is optimized for accurate delivery rather than timely delivery and can incur relatively long delays (on the order of seconds) while waiting for out-of-order messages or re-transmissions of lost messages. Therefore, it is not particularly suitable for real-time applications such as Voice over IP. For such applications, protocols like the Real-time Transport Protocol (RTP) operating over the User Datagram Protocol (UDP) are usually recommended instead.[3]

TCP is a reliable stream delivery service which guarantees that all bytes received will be identical with bytes sent and in the correct order. Since packet transfer by many networks is not reliable, a technique known as positive acknowledgement with re-transmission is used to guarantee reliability. This fundamental technique requires the receiver to respond with an acknowledgement message as it receives the data. The sender keeps a record of each packet it sends and maintains a timer from when the packet was sent. The sender re-transmits a packet if the timer expires before receiving the message acknowledgement. The timer is needed in case a packet gets lost or corrupted.[3]

While IP handles actual delivery of the data, TCP keeps track of 'segments' - the individual units of data transmission that a message is divided into for efficient routing through the network. For example, when an HTML file is sent from a web server, the TCP software layer of that server divides the sequence of file octets into segments and forwards them individually to the IP software layer (Internet Layer). The Internet Layer encapsulates each TCP segment into an IP packet by adding a header that includes (among other data) the destination IP address. When the client program on the destination computer receives them, the TCP layer (Transport Layer) re-assembles the individual segments and ensures they are correctly ordered and error-free as it streams them to an application.

This page was last edited on 19 July 2018, at 13:28 (UTC).
Reference: https://en.wikipedia.org/wiki/Transmission_Control_Protocol under CC BY-SA license.

Related Topics

Recently Viewed