The Hardest Logic Puzzle Ever

The Hardest Logic Puzzle Ever is a logic puzzle so called by American philosopher and logician George Boolos and published in The Harvard Review of Philosophy in 1996. Boolos' article includes multiple ways of solving the problem. A translation in Italian was published earlier in the newspaper La Repubblica, under the title L'indovinello più difficile del mondo.

It is stated as follows:

Three gods A, B, and C are called, in no particular order, True, False, and Random. True always speaks truly, False always speaks falsely, but whether Random speaks truly or falsely is a completely random matter. Your task is to determine the identities of A, B, and C by asking three yes-no questions; each question must be put to exactly one god. The gods understand English, but will answer all questions in their own language, in which the words for yes and no are da and ja, in some order. You do not know which word means which.

Boolos provides the following clarifications: a single god may be asked more than one question, questions are permitted to depend on the answers to earlier questions, and the nature of Random's response should be thought of as depending on the flip of a fair coin hidden in his brain: if the coin comes down heads, he speaks truly; if tails, falsely.

Boolos credits the logician Raymond Smullyan as the originator of the puzzle and John McCarthy with adding the difficulty of not knowing what da and ja mean. Related puzzles can be found throughout Smullyan's writings. For example, in What is the Name of This Book?, he describes a Haitian island where half the inhabitants are zombies (who always lie) and half are humans (who always tell the truth). He explains that "the situation is enormously complicated by the fact that although all the natives understand English perfectly, an ancient taboo of the island forbids them ever to use non-native words in their speech. Hence whenever you ask them a yes-no question, they reply Bal or Da—one of which means yes and the other no. The trouble is that we do not know which of Bal or Da means yes and which means no." There are other related puzzles in The Riddle of Scheherazade.

The puzzle is based on Knights and Knaves puzzles. One setting for this puzzle is a fictional island inhabited only by knights and knaves, where knights always tell the truth and knaves always lie. A visitor to the island must ask a number of yes/no questions in order to discover what he needs to know (the specifics of which vary between different versions of the puzzle). One version of these puzzles was popularized by a scene in the 1986 fantasy film Labyrinth. There are two doors with two guards. One guard lies and one guard does not. One door leads to the castle and the other leads to 'certain death'. The puzzle is to find out which door leads to the castle by asking one of the guards one question. In the movie, the protagonist Sarah, does this by asking, "Would he tell me that this door leads to the castle?"

This page was last edited on 13 June 2018, at 21:35 (UTC).
Reference: https://en.wikipedia.org/wiki/The_Hardest_Logic_Puzzle_Ever under CC BY-SA license.

Related Topics

Recently Viewed