Solar flare

A solar flare is a sudden flash of increased Sun's brightness, usually observed near its surface. Flares are often, but not always, accompanied by a coronal mass ejection.

Solar flares fall on a very broad spectrum of emissions, an energy release of typically 1020 joules of energy is considered to be the median for a well-observed event, while a major event can emit up to 1025 joules

The flare ejects clouds of electrons, ions, and atoms along with the electromagnetic waves through the Sun's corona into outer space. The phenomenon therefore provides an early example of multi-messenger astronomy. If ejection is in the direction of the Earth the particles hitting the upper atmosphere can cause bright auroras, and may even disrupt long range radio communication. It usually takes a day or two for these clouds to reach Earth. The term is also used to refer to similar phenomena in other stars, where the term stellar flare applies.

Solar flares affect all layers of the solar atmosphere (photosphere, chromosphere, and corona), when the plasma medium is heated to tens of millions of degrees kelvin, while the cosmic-ray-like electrons, protons, and heavier ions are accelerated to near the speed of light. They produce radiation across the electromagnetic spectrum at all wavelengths, from radio waves to gamma rays, although most of the energy is spread over frequencies outside the visual range and for this reason the majority of the flares are not visible to the naked eye and must be observed with special instruments. Flares occur in active regions around sunspots, where intense magnetic fields penetrate the photosphere to link the corona to the solar interior. Flares are powered by the sudden (timescales of minutes to tens of minutes) release of magnetic energy stored in the corona. The same energy releases may produce coronal mass ejections (CME), although the relation between CMEs and flares is still not well established.

X-rays and UV radiation emitted by solar flares can affect Earth's ionosphere and disrupt long-range radio communications. Direct radio emission at decimetric wavelengths may disturb the operation of radars and other devices that use those frequencies.

Solar flares were first observed on the Sun by Richard Christopher Carrington and independently by Richard Hodgson in 1859 as localized visible brightenings of small areas within a sunspot group. Stellar flares can be inferred by looking at the lightcurves produced from the telescope or satellite data of variety of other stars.

This page was last edited on 30 January 2018, at 22:45.
Reference: under CC BY-SA license.

Related Topics

Recently Viewed