Question book-new.svg
A reef is a bar of rock, sand, coral or similar material, lying beneath the surface of water. Many reefs result from abiotic processes (i.e. deposition of sand, wave erosion planing down rock outcrops, and other natural processes), but the best known reefs are the coral reefs of tropical waters developed through biotic processes dominated by corals and calcareous algae.

Artificial reefs (e.g. shipwrecks) sometimes have a role in enhancing the physical complexity of featureless sand bottoms, in order to attract a diverse assemblage of organisms, especially algae, and fish.

Earth's largest and most famous reef is the Great Barrier Reef in Australia, at a length of 2,300 kilometres.

There is a variety of biotic reef types, including oyster reefs, but the most massive and widely distributed are tropical coral reefs. Although corals are major contributors to the framework and bulk material comprising a coral reef, the organisms most responsible for reef growth against the constant assault from ocean waves are calcareous algae, especially, although not entirely, species of coralline algae.

These biotic reef types take on additional names depending upon how the reef lies in relation to the land, if any. Reef types include fringing reef, barrier reefs, as well as atolls. A fringing reef is a reef that is attached to an island. A barrier reef forms a calcareous barrier around an island resulting in a lagoon between the shore and the reef. An atoll is a ring reef with no land present. The reef front (ocean side) is a high energy locale whereas the internal lagoon will be at a lower energy with fine grained sediments.

One useful definition distinguishes reefs from mounds as follows: Both are considered to be varieties of organosedimentary buildups: sedimentary features, built by the interaction of organisms and their environment, that have synoptic relief and whose biotic composition differs from that found on and beneath the surrounding sea floor. Reefs are held up by a macroscopic skeletal framework. Coral reefs are an excellent example of this kind. Corals and calcareous algae grow on top of one another and form a three-dimensional framework that is modified in various ways by other organisms and inorganic processes. By contrast, mounds lack a macroscopic skeletal framework. Mounds are built by microorganisms or by organisms that don't grow a skeletal framework. A microbial mound might be built exclusively or primarily by cyanobacteria. Excellent examples of biostromes formed by cyanobacteria occur in the Great Salt Lake of Utah (USA), and in Shark Bay, Western Australia.

Cyanobacteria do not have skeletons and individuals are microscopic. Cyanobacteria encourage the precipitation or accumulation of calcium carbonate and can produce distinct sediment bodies in composition that have relief on the seafloor. Cyanobacterial mounds were most abundant before the evolution of shelly macroscopic organisms, but they still exist today (stromatolites are microbial mounds with a laminated internal structure). Bryozoans and crinoids, common contributors to marine sediments during the Mississippian (for example), produced a very different kind of mound. Bryozoans are small and the skeletons of crinoids disintegrate. However, bryozoan and crinoid meadows can persist over time and produce compositionally distinct bodies of sediment with depositional relief.

The Proterozoic Belt Supergroup contains evidence of possible microbial mat and dome structures similar to stromatolite reef complexes.[1]

This page was last edited on 13 May 2018, at 23:06 (UTC).
Reference: under CC BY-SA license.

Related Topics

Recently Viewed