RNA world

The RNA world is a hypothetical stage in the evolutionary history of life on Earth, in which self-replicating RNA molecules proliferated before the evolution of DNA and proteins. The term also refers to the hypothesis that posits the existence of this stage.

The concept of the RNA world was first proposed in 1962 by Alexander Rich, and the term was coined by Walter Gilbert in 1986. Alternative chemical paths to life have been proposed, and RNA-based life may not have been the first life to exist. Even so, the evidence for an RNA world is strong enough that the hypothesis has gained wide acceptance.

Like DNA, RNA can store and replicate genetic information; like protein enzymes, RNA enzymes (Ribozymes) can catalyze (start or accelerate) chemical reactions that are critical for life. One of the most critical components of the cell, the ribosome, is composed primarily of RNA. Ribonucleotide moieties in many coenzymes, such as Acetyl-CoA, NADH, FADH and F420, have long been thought to be surviving remnants of covalently bound coenzymes in an RNA world.

Although RNA is fragile, some ancient RNAs may have evolved the ability to methylate other RNAs to protect them.

If the RNA world existed, it was probably followed by an age characterized by the evolution of ribonucleoproteins (RNP world), which in turn ushered in the era of DNA and longer proteins. The reason why DNA became the predominant storage molecule may be because it is more stable and durable than RNA. Protein enzymes may have come to replace RNA-based ribozymes as biocatalysts because their greater abundance and diversity of monomers makes them more versatile. As some co-factors contain both nucleotide and amino acid characteristics, it may be that amino acids, peptides and finally proteins initially were co-factors for ribozymes.

One of the challenges in studying abiogenesis is that the system of reproduction and metabolism utilized by all extant life involves three distinct types of interdependent macromolecules (DNA, RNA, and protein). This suggests that life could not have arisen in its current form, which has led researchers to hypothesize mechanisms whereby the current system might have arisen from a simpler precursor system. The concept of RNA as a primordial molecule can be found in papers by Francis Crick and Leslie Orgel, as well as in Carl Woese's 1967 book The Genetic Code. In 1962, the molecular biologist Alexander Rich posited much the same idea in an article he contributed to a volume issued in honor of Nobel-laureate physiologist Albert Szent-Györgyi. Hans Kuhn in 1972 laid out a possible process by which the modern genetic system might have arisen from a nucleotide-based precursor, and this led Harold White in 1976 to observe that many of the cofactors essential for enzymatic function are either nucleotides or could have been derived from nucleotides. He proposed that these nucleotide cofactors represent "fossils of nucleic acid enzymes". The phrase "RNA World" was first used by Nobel laureate Walter Gilbert in 1986, in a commentary on how recent observations of the catalytic properties of various forms of RNA fit with this hypothesis.

This page was last edited on 19 May 2018, at 17:16.
Reference: https://en.wikipedia.org/wiki/RNA_world under CC BY-SA license.

Related Topics

Recently Viewed