Phytochemistry

Myoglobin.png
Phytochemistry is the study of phytochemicals, which are chemicals derived from plants. Those studying phytochemistry strive to describe the structures of the large number of secondary metabolic compounds found in plants, the functions of these compounds in human and plant biology, and the biosynthesis of these compounds. Plants synthesize phytochemicals for many reasons, including to protect themselves against insect attacks and plant diseases. Phytochemicals in food plants are often active in human biology, and in many cases have health benefits. The compounds found in plants are of many kinds, but most are in four major biochemical classes, the alkaloids, glycosides, polyphenols, and terpenes.

Phytochemistry can be considered sub-fields of botany or chemistry. Activities can be led in botanical gardens or in the wild with the aid of ethnobotany. The applications of the discipline can be for pharmacognosy, or the discovery of new drugs, or as an aid for plant physiology studies.

Techniques commonly used in the field of phytochemistry are extraction, isolation, and structural elucidation (MS,1D and 2D NMR) of natural products, as well as various chromatography techniques (MPLC, HPLC, and LC-MS).

The list of simple elements of which plants are primarily constructed—carbon, oxygen, hydrogen, calcium, phosphorus, etc.—is not different from similar lists for animals, fungi, or even bacteria. The fundamental atomic components of plants are the same as for all life; only the details of the way in which they are assembled differs.

Phytochemistry is widely used in the field of Chinese medicine especially in the field of herbal medicine.

Phytochemical technique mainly applies to the quality control of Chinese medicine, Ayurvedic medicine(Indian traditional medicine) or herbal medicine of various chemical components, such as saponins, alkaloids, volatile oils, flavonoids and anthraquinones. In the development of rapid and reproducible analytical techniques, the combination of HPLC with different detectors, such as diode array detector (DAD), refractive index detector (RID), evaporative light scattering detector (ELSD) and mass spectrometric detector (MSD), has been widely developed.

This page was last edited on 2 March 2018, at 17:26.
Reference: https://en.wikipedia.org/wiki/Phytochemistry under CC BY-SA license.

Related Topics

Recently Viewed