Parts-per notation

In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they are pure numbers with no associated units of measurement. Commonly used are ppm (parts-per-million, 10−6), ppb (parts-per-billion, 10−9), ppt (parts-per-trillion, 10−12) and ppq (parts-per-quadrillion, 10−15). This notation is not part of the SI system and its meaning is ambiguous.

Parts-per notation is often used describing dilute solutions in chemistry, for instance, the relative abundance of dissolved minerals or pollutants in water. The unit “1 ppm” can be used for a mass fraction if a water-borne pollutant is present at one-millionth of a gram per gram of sample solution. When working with aqueous solutions, it is common to assume that the density of water is 1.00 g/mL. Therefore, it is common to equate 1 kilogram of water with 1 L of water. Consequently, 1 ppm corresponds to 1 mg/L and 1 ppb corresponds to 1 μg/L.

Similarly, parts-per notation is used also in physics and engineering to express the value of various proportional phenomena. For instance, a special metal alloy might expand 1.2 micrometers per meter of length for every degree Celsius and this would be expressed as “α = 1.2 ppm/°C.” Parts-per notation is also employed to denote the change, stability, or uncertainty in measurements. For instance, the accuracy of land-survey distance measurements when using a laser rangefinder might be 1 millimeter per kilometer of distance; this could be expressed as “Accuracy = 1 ppm.”

Parts-per notations are all dimensionless quantities: in mathematical expressions, the units of measurement always cancel. In fractions like “2 nanometers per meter” (2 nm/m = 2 nano = 2 × 10−9 = 2 ppb = 2 × 0.000000001) so the quotients are pure-number coefficients with positive values less than 1. When parts-per notations, including the percent symbol (%), are used in regular prose (as opposed to mathematical expressions), they are still pure-number dimensionless quantities. However, they generally take the literal “parts per” meaning of a comparative ratio (e.g., “2 ppb” would generally be interpreted as “two parts in a billion parts”).

Parts-per notations may be expressed in terms of any unit of the same measure. For instance, the coefficient of thermal expansion of a certain brass alloy, α = 18.7 ppm/°C, may be expressed as 18.7 (µm/m)/°C, or as 18.7 (µin/in)/°C; the numeric value representing a relative proportion does not change with the adoption of a different unit of measure. Similarly, a metering pump that injects a trace chemical into the main process line at the proportional flow rate Qp = 125 ppm, is doing so at a rate that may be expressed in a variety of volumetric units, including 125 µL/L, 125 µgal/gal, 125 cm3/m3, etc.

In nuclear magnetic resonance spectroscopy (NMR), chemical shift is usually expressed in ppm. It represents the difference of a measured frequency in parts per million from the reference frequency. The reference frequency depends on the instrument's magnetic field and the element being measured. It is usually expressed in MHz. Typical chemical shifts are rarely more than a few hundred Hz from the reference frequency, so chemical shifts are conveniently expressed in ppm (Hz/MHz). Parts-per notation gives a dimensionless quantity that does not depend on the instrument's field strength.

This page was last edited on 7 February 2018, at 11:14.
Reference: https://en.wikipedia.org/wiki/Parts-per_notation under CC BY-SA license.

Related Topics

Recently Viewed