In chemistry, pH (/pˈ/) (potential of hydrogen) is a numeric scale used to specify the acidity or basicity of an aqueous solution. It is approximately the negative of the base 10 logarithm of the molar concentration, measured in units of moles per liter, of hydrogen ions. More precisely it is the negative of the base 10 logarithm of the activity of the hydrogen ion. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic. Pure water is neutral, at pH 7 (25 °C), being neither an acid nor a base. Contrary to popular belief, the pH value can be less than 0 or greater than 14 for very strong acids and bases respectively.

Measurements of pH are important in agronomy, medicine, biology, chemistry, agriculture, forestry, food science, environmental science, oceanography, civil engineering, chemical engineering, nutrition, water treatment and water purification, and many other applications.

The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. Primary pH standard values are determined using a concentration cell with transference, by measuring the potential difference between a hydrogen electrode and a standard electrode such as the silver chloride electrode. The pH of aqueous solutions can be measured with a glass electrode and a pH meter, or an indicator.

The concept of pH was first introduced by the Danish chemist Søren Peder Lauritz Sørensen at the Carlsberg Laboratory in 1909 and revised to the modern pH in 1924 to accommodate definitions and measurements in terms of electrochemical cells. In the first papers, the notation had the "H" as a subscript to the lowercase "p", as so: pH.

The exact meaning of the "p" in "pH" is disputed, but according to the Carlsberg Foundation, pH stands for "power of hydrogen". It has also been suggested that the "p" stands for the German Potenz (meaning "power"), others refer to French puissance (also meaning "power", based on the fact that the Carlsberg Laboratory was French-speaking). Another suggestion is that the "p" stands for the Latin terms pondus hydrogenii (quantity of hydrogen), potentia hydrogenii (capacity of hydrogen), or potential hydrogen. It is also suggested that Sørensen used the letters "p" and "q" (commonly paired letters in mathematics) simply to label the test solution (p) and the reference solution (q). Currently in chemistry, the p stands for "decimal cologarithm of", and is also used in the term pKa, used for acid dissociation constants.

The first electronic method for measuring pH was invented by Arnold Orville Beckman, a professor at California Institute of Technology in 1934. It was in response to local citrus grower Sunkist that wanted a better method for quickly testing the pH of lemons they were picking from their nearby orchards.

This page was last edited on 11 March 2018, at 19:21.
Reference: under CC BY-SA license.

Related Topics

Recently Viewed