Number density

In physics, astronomy, chemistry, biology and geography, number density (symbol: n or ρN) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number density, two-dimensional areal number density, or one-dimensional line number density. Population density is an example of areal number density. The term number concentration (symbol: C, to avoid confusion with amount of substance n) is sometimes used in chemistry for the same quantity, particularly when comparing with other concentrations.

Volume number density is the number of specified objects per unit volume:

where N is the total number of objects in a volume V.

Here it is assumed that N is large enough that rounding of the count to the nearest integer does not introduce much of an error, however V is chosen to be small enough that the resulting n does not depend much on the size or shape of the volume V.

In SI units, number density is measured in m−3, although cm−3 is often used. However, these units are not quite practical when dealing with atoms or molecules of gases, liquids or solids at room temperature and atmospheric pressure, because the resulting numbers are extremely large (on the order of 1020). Using the number density of an ideal gas at 0 °C and 1 atm as a yardstick: n0 = 1 amg = 2.686,777,4 × 1025 m−3 is often introduced as a unit of number density, for any substances at any conditions (not necessarily limited to an ideal gas at 0 °C and 1 atm).

Using the number density as a function of spatial coordinates, the total number of objects N in the entire volume V can be calculated as

This page was last edited on 31 May 2018, at 17:24.
Reference: https://en.wikipedia.org/wiki/Number_density under CC BY-SA license.

Related Topics

Recently Viewed