Mosquito 2007-2.jpg
Mosquitoes are small, midge-like flies that constitute the family Culicidae. Females of most species are ectoparasites, whose tube-like mouthparts (called a proboscis) pierce the hosts' skin to consume blood. The word "mosquito" (formed by mosca and diminutive -ito) is Spanish for "little fly". Thousands of species feed on the blood of various kinds of hosts, mainly vertebrates, including mammals, birds, reptiles, amphibians, and even some kinds of fish. Some mosquitoes also attack invertebrates, mainly other arthropods. Though the loss of blood is seldom of any importance to the victim, the saliva of the mosquito often causes an irritating rash that is a serious nuisance. Much more serious though, are the roles of many species of mosquitoes as vectors of diseases. In passing from host to host, some transmit extremely harmful infections such as malaria, yellow fever, Chikungunya, West Nile virus, dengue fever, filariasis, Zika virus and other arboviruses, rendering it the deadliest animal family in the world.

The oldest known mosquito with an anatomy similar to modern species was found in 79-million-year-old Canadian amber from the Cretaceous. An older sister species with more primitive features was found in Burmese amber that is 90 to 100 million years old. Two mosquito fossils have been found that show very little morphological change in modern mosquitoes against their counterpart from 46 million years ago. These fossils are also the oldest ever found to have blood preserved within their abdomens. Despite no fossils being found earlier than the Cretaceous, recent studies suggest that the earliest divergence of mosquitoes between the lineages leading to Anophelinae and Culicinae occurred 226 million years ago.

The Old and New World Anopheles species are believed to have subsequently diverged about 95 million years ago.

The mosquito Anopheles gambiae is currently undergoing speciation into the M(opti) and S(avanah) molecular forms. Consequently, some pesticides that work on the M form no longer work on the S form. Over 3,500 species of the Culicidae have already been described. They are generally divided into two subfamilies which in turn comprise some 43 genera. These figures are subject to continual change, as more species are discovered, and as DNA studies compel rearrangement of the taxonomy of the family. The two main subfamilies are the Anophelinae and Culicinae, with their genera as shown in the subsection below. The distinction is of great practical importance because the two subfamilies tend to differ in their significance as vectors of different classes of diseases. Roughly speaking, arboviral diseases such as yellow fever and dengue fever tend to be transmitted by Culicine species, not necessarily in the genus Culex. Some transmit various species of avian malaria, but it is not clear that they ever transmit any form of human malaria. Some species do however transmit various forms of filariasis, much as many Simuliidae do.

Anopheline mosquitoes, again not necessarily in the genus Anopheles, sometimes bear pathogenic arboviruses, but it is not yet clear that they ever transmit them as effective vectors. However, all the most important vectors of human malaria are Anopheline.

Mosquitoes are members of a family of nematocerid flies: the Culicidae (from the Latin culex, genitive culicis, meaning "midge" or "gnat"). Superficially, mosquitoes resemble crane flies (family Tipulidae) and chironomid flies (family Chironomidae). In particular, the females of many species of mosquitoes are blood-eating pests and dangerous vectors of diseases, whereas members of the similar-looking Chironomidae and Tipulidae are not. Many species of mosquitoes are not blood eaters and of those that are, many create a "high to low pressure" in the blood to obtain it and do not transmit disease. Also, in the bloodsucking species, only the females suck blood. Furthermore, even among mosquitoes that do carry important diseases, neither all species of mosquitoes, nor all strains of a given species transmit the same kinds of diseases, nor do they all transmit the diseases under the same circumstances; their habits differ. For example, some species attack people in houses, and others prefer to attack people walking in forests. Accordingly, in managing public health, knowing which species or even which strain of mosquito one is dealing with is important.

This page was last edited on 20 May 2018, at 03:07.
Reference: under CC BY-SA license.

Related Topics

Recently Viewed