Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are called alloys. Metallurgy is used to separate metals from their ore. Metallurgy is also the technology of metals: the way in which science is applied to the production of metals, and the engineering of metal components for usage in products for consumers and manufacturers. The production of metals involves the processing of ores to extract the metal they contain, and the mixture of metals, sometimes with other elements, to produce alloys. Metallurgy is distinguished from the craft of metalworking, although metalworking relies on metallurgy, as medicine relies on medical science, for technical advancement. The science of metallurgy is subdivided into chemical metallurgy and physical metallurgy.

Metallurgy is subdivided into ferrous metallurgy (also known as black metallurgy) and non-ferrous metallurgy (also known as colored metallurgy). Ferrous metallurgy involves processes and alloys based on iron while non-ferrous metallurgy involves processes and alloys based on other metals. The production of ferrous metals accounts for 95 percent of world metal production.[1]

The roots of metallurgy derive from Ancient Greek: μεταλλουργός, metallourgós, "worker in metal", from μέταλλον, métallon, "metal" + ἔργον, érgon, "work".

The word was originally an alchemist's term for the extraction of metals from minerals, the ending -urgy signifying a process, especially manufacturing: it was discussed in this sense in the 1797 Encyclopædia Britannica.[2] In the late 19th century it was extended to the more general scientific study of metals, alloys, and related processes.

In English, the /meˈtælədʒi/ pronunciation is the more common one in the UK and Commonwealth. The /ˈmetələrdʒi/ pronunciation is the more common one in the USA, and is the first-listed variant in various American dictionaries (e.g., Merriam-Webster Collegiate, American Heritage).

The earliest recorded metal employed by humans appears to be gold, which can be found free or "native". Small amounts of natural gold have been found in Spanish caves used during the late Paleolithic period, c. 40,000 BC.[3] Silver, copper, tin and meteoric iron can also be found in native form, allowing a limited amount of metalworking in early cultures.[4] Egyptian weapons made from meteoric iron in about 3000 BC were highly prized as "daggers from heaven".[5]

Certain metals, notably tin, lead and (at a higher temperature) copper, can be recovered from their ores by simply heating the rocks in a fire or blast furnace, a process known as smelting. The first evidence of this extractive metallurgy, dating from the 5th and 6th millennia BC,[6] has been found at archaeological sites in Majdanpek, Yarmovac, and Plocnik, in present-day Serbia. To date, the earliest evidence of copper smelting is found at the Belovode site near Plocnik.[7] This site produced a copper axe from 5500 BC, belonging to the Vinča culture.[8]

The earliest use of lead is documented from the late neolithic settlement of Yarim Tepe in Iraq,

This page was last edited on 17 July 2018, at 23:39 (UTC).
Reference: under CC BY-SA license.

Related Topics

Recently Viewed