Kuder–Richardson Formula 20

In psychometrics, the Kuder–Richardson Formula 20 (KR-20), first published in 1937, is a measure of internal consistency reliability for measures with dichotomous choices. It is a special case of Cronbach's α, computed for dichotomous scores. It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like Cronbach's α, homogeneity (that is, unidimensionality) is actually an assumption, not a conclusion, of reliability coefficients. It is possible, for example, to have a high KR-20 with a multidimensional scale, especially with a large number of items.

Values can range from 0.00 to 1.00 (sometimes expressed as 0 to 100), with high values indicating that the examination is likely to correlate with alternate forms (a desirable characteristic). The KR-20 may be affected by difficulty of the test, the spread in scores and the length of the examination.

In the case when scores are not tau-equivalent (for example when there is not homogeneous but rather examination items of increasing difficulty) then the KR-20 is an indication of the lower bound of internal consistency (reliability).

The formula for KR-20 for a test with K test items numbered i=1 to K is

where pi is the proportion of correct responses to test item i, qi is the proportion of incorrect responses to test item i (so that pi +

qi = 1), and the variance for the denominator is

where n is the total sample size.

If it is important to use unbiased operators then the sum of squares should be divided by degrees of freedom (n − 1) and the probabilities are multiplied by

This page was last edited on 5 March 2018, at 15:50.
Reference: https://en.wikipedia.org/wiki/Kuder-Richardson_Formula_20 under CC BY-SA license.

Related Topics

Recently Viewed