Interoception is contemporarily defined as the sense of the internal state of the body. It encompasses the brain’s process of integrating signals relayed from the body into specific subregions—like the brainstem, thalamus, insula, somatosensory, and anterior cingulate cortex—allowing for a nuanced representation of the physiological state of the body. This is important for maintaining homeostatic conditions in the body and, potentially, aiding in self-awareness.

Interoceptive signals are projected to the brain via a diversity of neural pathways that allow for the sensory processing and prediction of internal bodily states. Misrepresentations of internal states, or a disconnect between the body’s signals and the brain’s interpretation and prediction of those signals, have been suggested to underlie some mental disorders such as anxiety, depression, panic disorder, anorexia nervosa, bulimia nervosa, posttraumatic stress disorder (PTSD), obsessive compulsive disorder (OCD), autism spectrum disorders, somatic symptom disorder, and illness anxiety disorder.

The contemporary definition of interoception is not synonymous with the term “visceroception.” Visceroception refers to the perception of bodily signals arising specifically from the viscera: the heart, lungs, stomach, and bladder, along with other internal organs in the trunk of the body. This does not include organs like the brain and skin. Interoception encompasses visceral signaling, but more broadly relates to all physiological tissues that relay a signal to the central nervous system about the current state of the body. Interoceptive signals are transmitted to the brain via multiple pathways including (1) the lamina I spinothalamic pathway, (2) the classical viscerosensory pathway, (3) the vagus nerve and glossopharyngeal nerve, (4) chemosensory pathways in the blood, and (5) somatosensory pathways from the skin.

Interoceptive signals arise from many different physiological systems of the body. The most commonly studied system is cardiovascular interoception which is typically measured by directing attention towards the sensation of the heartbeat during various tasks. Other physiological systems integral to interoceptive processing include the respiratory system, gastrointestinal and genitourinary systems, nociceptive system, thermoregulatory system, endocrine and immune systems. Soft cutaneous touch is another sensory signal often included within the interoceptive processing system.

Interoception received increased visibility in the 21st century, but the concept was originally introduced by the Nobel Laureate Sir Charles S. Sherrington in 1906. Sherrington referred to interoception (although never stating the term, using “interoceptive” instead) as a way to describe receptors in the body based on their location and function. Here, interoception was confined to the viscera, excluding all receptors and information from the body that would have been considered “exteroceptive” or “proprioceptive.” In Sherrington’s model, exteroceptive receptors received information from outward stimuli, like light, touch, sound, and odor. He classified temperature and nociception as exteroceptive sensations as well; however, these have now been regarded as having interoceptive qualities. He further divided the internal milieu of the body by its somatic and autonomic functions. Here, proprioceptors were localized to skeletal tissue, which control voluntary movement. Interoceptors, a term which has lost prevalence in modern literature, were thus confined to visceral involuntary smooth muscle (e.g. surrounding blood vessels).

Many experiments were conducted in the 1950s and 1960s regarding interoceptive processing. However, research did not start immediately after Sherrington’s discussion of interoceptors because a book by John Newport Langley was published stating that the autonomic nervous system only used efferent (brain-to-body) signaling to implement its functions. This narrowed perspective halted research on interoceptive receptors for many years. Once it became apparent that interoceptive receptors are present in many tissues of the body other researchers began to investigate afferent body-to-brain signals, mainly by conducting animal experiments to see if interoceptive conditioning was possible. Using principles of Pavlovian conditioning, different physiological systems in dogs were perturbed to elicit a conditioned response to food. For example, in one experiment, dogs’ pelvises were distended using infusions of solution when food was presented to them. After rounds of pairing the two, salivation occurred without presenting food once the pelvis was distended. Interoceptive conditioning studies like this illustrated that interoceptive sensations may be important for learned behavior and emotion.

This page was last edited on 8 January 2018, at 00:47.
Reference: under CC BY-SA license.

Related Topics

Recently Viewed