Intelligent Network

The Intelligent Network (IN) is the standard network architecture specified in the ITU-T Q.1200 series recommendations. It is intended for fixed as well as mobile telecom networks. It allows operators to differentiate themselves by providing value-added services in addition to the standard telecom services such as PSTN, ISDN on fixed networks, and GSM services on mobile phones or other mobile devices.

The intelligence is provided by network nodes on the service layer, distinct from the switching layer of the core network, as opposed to solutions based on intelligence in the core switches or equipment. The IN nodes are typically owned by telecommunications service providers such as a telephone company or mobile phone operator.

IN is supported by the Signaling System #7 (SS7) protocol between network switching centers and other network nodes owned by network operators.

The IN concepts, architecture and protocols were originally developed as standards by the ITU-T which is the standardization committee of the International Telecommunication Union; prior to this a number of telecommunications providers had proprietary implementations.[1] The primary aim of the IN was to enhance the core telephony services offered by traditional telecommunications networks, which usually amounted to making and receiving voice calls, sometimes with call divert. This core would then provide a basis upon which operators could build services in addition to those already present on a standard telephone exchange.

A complete description of the IN emerged in a set of ITU-T standards named Q.1210 to Q.1219, or Capability Set One (CS-1) as they became known. The standards defined a complete architecture including the architectural view, state machines, physical implementation and protocols. They were universally embraced by telecom suppliers and operators, although many variants were derived for use in different parts of the world (see Variants below).

Following the success of CS-1, further enhancements followed in the form of CS-2. Although the standards were completed, they were not as widely implemented as CS-1, partly because of the increasing power of the variants, but also partly because they addressed issues which pushed traditional telephone exchanges to their limits.

The major driver behind the development of the IN was the need for a more flexible way of adding sophisticated services to the existing network. Before the IN was developed, all new features and/or services had to be implemented directly in the core switch systems. This made for long release cycles as the software testing had to be extensive and thorough to prevent the network from failing. With the advent of the IN, most of these services (such as toll-free numbers and geographical number portability) were moved out of the core switch systems and into self-contained nodes, creating a modular and more secure network that allowed the service providers themselves to develop variations and value-added services to their networks without submitting a request to the core switch manufacturer and waiting for the long development process. The initial use of IN technology was for number translation services, e.g. when translating toll-free numbers to regular PSTN numbers; much more complex services have since been built on the IN, such as Custom Local Area Signaling Services (CLASS) and prepaid telephone calls.

The main concepts (functional view) surrounding IN services or architecture are connected with SS7 architecture:

This page was last edited on 20 April 2018, at 18:04 (UTC).
Reference: https://en.wikipedia.org/wiki/Intelligent_network_service under CC BY-SA license.

Related Topics

Recently Viewed