Holocene extinction

The Holocene extinction, otherwise referred to as the Sixth extinction or Anthropocene extinction, is the ongoing extinction event of species during the present Holocene epoch, mainly as a result of human activity. The large number of extinctions spans numerous families of plants and animals, including mammals, birds, amphibians, reptiles and arthropods. With widespread degradation of highly biodiverse habitats such as coral reefs and rainforest, as well as other areas, the vast majority of these extinctions is thought to be undocumented. The current rate of extinction of species is estimated at 100 to 1,000 times higher than natural background rates.

The Holocene extinction includes the disappearance of large land animals known as megafauna, starting at the end of the last Ice Age. Megafauna outside of the African continent, which did not evolve alongside humans, proved highly sensitive to the introduction of new predation, and many died out shortly after early humans began spreading and hunting across the Earth (additionally, many African species have also gone extinct in the Holocene). These extinctions, occurring near the PleistoceneHolocene boundary, are sometimes referred to as the Quaternary extinction event.

The arrival of humans on different continents coincides with megafaunal extinction. The most popular theory is that human overhunting of species added to existing stress conditions. Although there is debate regarding how much human predation affected their decline, certain population declines have been directly correlated with human activity, such as the extinction events of New Zealand and Hawaii. Aside from humans, climate change may have been a driving factor in the megafaunal extinctions, especially at the end of the Pleistocene.

The ecology of humanity has been noted as being that of an unprecedented "global superpredator" that regularly preys on the adults of other apex predators and has worldwide effects on food webs. Extinctions of species have occurred on every land mass and ocean, with many famous examples within Africa, Asia, Europe, Australia, North and South America, and on smaller islands. Overall, the Holocene extinction can be characterized by the human impact on the environment. The Holocene extinction continues into the 21st century, with meat consumption, overfishing, ocean acidification and the decline in amphibian populations being a few broader examples of an almost universal, cosmopolitan decline in biodiversity. Human overpopulation (and continued population growth) along with profligate consumption are considered to be the primary drivers of this rapid decline.

The Holocene extinction is also known as the "sixth extinction", due to its possibly being the sixth mass extinct event, after the Ordovician–Silurian extinction events, the Late Devonian extinction, the Permian–Triassic extinction event, the Triassic–Jurassic extinction event, and the Cretaceous–Paleogene extinction event. Mass extinctions are characterized by the loss of at least 75% of species within a geologically short period of time. There is no general agreement on where the Holocene, or anthropogenic, extinction begins, and the Quaternary extinction event, which includes climate change resulting in the end of the last ice age, ends, or if they should be considered separate events at all. Some have suggested that anthropogenic extinctions may have begun as early as when the first modern humans spread out of Africa between 100,000 and 200,000 years ago, which is supported by rapid megafaunal extinction following recent human colonisation in Australia, New Zealand and Madagascar, in a similar way that any large, adaptable predator moving into a new ecosystem would (invasive species). In many cases, it is suggested even minimal hunting pressure was enough to wipe out large fauna, particularly on geographically isolated islands. Only during the most recent parts of the extinction have plants also suffered large losses.

In The Future of Life (2002), Edward Osborne Wilson of Harvard calculated that, if the current rate of human disruption of the biosphere continues, one-half of Earth's higher lifeforms will be extinct by 2100. A 1998 poll conducted by the American Museum of Natural History found that seventy percent of biologists acknowledge an ongoing anthropogenic extinction event. At present, the rate of extinction of species is estimated at 100 to 1,000 times higher than the background extinction rate, the historically typical rate of extinction (in terms of the natural evolution of the planet) and also the current rate of extinction is, therefore, 10 to 100 times higher than any of the previous mass extinctions in the history of Earth. One scientist estimates the current extinction rate may be 10,000 times the background extinction rate. Nevertheless, most scientists predict a much lower extinction rate than this outlying estimate. Theoretical ecologist Stuart Pimm stated, for plants, the extinction rate is 100 times higher than normal.

This page was last edited on 19 May 2018, at 09:37.
Reference: https://en.wikipedia.org/wiki/Holocene_extinction under CC BY-SA license.

Related Topics

Recently Viewed