Gilbert N. Lewis

Gilbert N Lewis.jpg
Gilbert Newton Lewis ForMemRS[1] (October 25 (or 23)[2], 1875 – March 23, 1946)[3][4] was an American physical chemist known for the discovery of the covalent bond and his concept of electron pairs; his Lewis dot structures and other contributions to valence bond theory have shaped modern theories of chemical bonding. Lewis successfully contributed to thermodynamics, photochemistry, and isotope separation, and is also known for his concept of acids and bases.[5]

G. N. Lewis was born in 1875 in Weymouth, Massachusetts. After receiving his PhD in chemistry from Harvard University and studying abroad in Germany and the Philippines, Lewis moved to California to teach chemistry at the University of California, Berkeley. Several years later, he became the Dean of the college of Chemistry at Berkeley, where he spent the rest of his life. As a professor, he incorporated thermodynamic principles into the chemistry curriculum and reformed chemical thermodynamics in a mathematically rigorous manner accessible to ordinary chemists. He began measuring the free energy values related to several chemical processes, both organic and inorganic.

In 1916, he also proposed his theory of bonding and added information about electrons in the periodic table of the chemical elements. In 1933, he started his research on isotope separation. Lewis worked with hydrogen and managed to purify a sample of heavy water. He then came up with his theory of acids and bases, and did work in photochemistry during the last years of his life. In 1926, Lewis coined the term "photon" for the smallest unit of radiant energy. He was a brother in Alpha Chi Sigma, the professional chemistry fraternity.

Though he was nominated 41 times,[6] G. N. Lewis never won the Nobel Prize in Chemistry. On March 23, 1946, Lewis was found dead in his Berkeley laboratory where he had been working with hydrogen cyanide; many postulated that the cause of his death was suicide. After Lewis' death, his children followed their father's career in chemistry.

Lewis was born in 1875 and raised in Weymouth, Massachusetts, where there exists a street named for him, G.N. Lewis Way, off Summer Street. Additionally, the wing of the new Weymouth High School Chemistry department has been named in his honor. Lewis received his primary education at home from his parents, Frank Wesley Lewis, a lawyer of independent character, and Mary Burr White Lewis. He read at age three and was intellectually precocious. In 1884 his family moved to Lincoln, Nebraska, and in 1889 he received his first formal education at the university preparatory school.

In 1893, after two years at the University of Nebraska, Lewis transferred to Harvard University, where he obtained his B.S. in 1896. After a year of teaching at Phillips Academy in Andover, Lewis returned to Harvard to study with the physical chemist T. W. Richards and obtained his Ph.D. in 1899 with a dissertation on electrochemical potentials.[citation needed] After a year of teaching at Harvard, Lewis took a traveling fellowship to Germany, the center of physical chemistry, and studied with Walther Nernst at Göttingen and with Wilhelm Ostwald at Leipzig.[7] While working in Nernst's lab, Nernst and Lewis apparently developed a lifelong enmity. In the following years, Lewis started to criticize and denounce his former teacher on many occasions, calling Nernst's work on his heat theorem "a regrettable episode in the history of chemistry".[8] A friend of Nernst's, Wilhelm Palmær (Swedish), was a member of the Nobel Chemistry Committee. There is evidence that he used the Nobel nominating and reporting procedures to block a Nobel Prize for Lewis in thermodynamics by nominating Lewis for the prize three times, and then using his position as a committee member to write negative reports.[9]

After his stay in Nernst's lab, Lewis returned to Harvard in 1901 as an instructor for three more years. He was appointed instructor in thermodynamics and electrochemistry. In 1904 Lewis was granted a leave of absence and became Superintendent of Weights and Measures for the Bureau of Science in Manila, Philippines. The next year he returned to Cambridge, Massachusetts when the Massachusetts Institute of Technology (MIT) appointed him to a faculty position, in which he had a chance to join a group of outstanding physical chemists under the direction of Arthur Amos Noyes. He became an assistant professor in 1907, associate professor in 1908, and full professor in 1911. He left MIT in 1912 to become a professor of physical chemistry and dean of the College of Chemistry at the University of California, Berkeley. Lewis Hall at Berkeley, built in 1948, is named in his honor.

Most of Lewis’ lasting interests originated during his Harvard years. The most important was thermodynamics, a subject in which Richards was very active at that time. Although most of the important thermodynamic relations were known by 1895, they were seen as isolated equations, and had not yet been rationalized as a logical system, from which, given one relation, the rest could be derived. Moreover, these relations were inexact, applying only to ideal chemical systems. These were two outstanding problems of theoretical thermodynamics. In two long and ambitious theoretical papers in 1900 and 1901, Lewis tried to provide a solution. Lewis introduced the thermodynamic concept of activity and coined the term "fugacity".[10] His new idea of fugacity, or "escaping tendency", was a function with the dimensions of pressure which expressed the tendency of a substance to pass from one chemical phase to another. Lewis believed that fugacity was the fundamental principle from which a system of real thermodynamic relations could be derived. This hope was not realized, though fugacity did find a lasting place in the description of real gases.

This page was last edited on 6 March 2018, at 17:45 (UTC).
Reference: https://en.wikipedia.org/wiki/Gilbert_N._Lewis under CC BY-SA license.

Related Topics

Recently Viewed