Hybridogenesis in water frogs gametes.svg

In the fields of molecular biology and genetics, a genome is the genetic material of an organism. It consists of DNA (or RNA in RNA viruses). The genome includes both the genes (the coding regions) and the noncoding DNA,[1] as well as the genetic material of the mitochondria[2] and chloroplasts.

A genome is all the genetic information of an organism. For example, the human genome is analogous to the instructions stored in a cookbook. Just as a cookbook gives the instructions needed to make a range of meals including a holiday feast or a summer picnic, the human genome contains all the instructions needed to make the full range of human cell types including muscle cells and neurons.

The term genome was created in 1920 by Hans Winkler,[4] professor of botany at the University of Hamburg, Germany. The Oxford Dictionary suggests the name is a blend of the words gene and chromosome.[5] However, see omics for a more thorough discussion. A few related -ome words already existed—such as biome, rhizome, forming a vocabulary into which genome fits systematically.[6]

A genome sequence is the complete list of the nucleotides (A, C, G, and T for DNA genomes) that make up all the chromosomes of an individual or a species. Within a species, the vast majority of nucleotides are identical between individuals, but sequencing multiple individuals is necessary to understand the genetic diversity.

In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (Bacteriophage MS2). The next year, Fred Sanger completed the first DNA-genome sequence: Phage Φ-X174, of 5386 base pairs.[7] The first complete genome sequences among all three domains of life were released within a short period during the mid-1990s: The first bacterial genome to be sequenced was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995. A few months later, the first eukaryotic genome was completed, with sequences of the 16 chromosomes of budding yeast Saccharomyces cerevisiae published as the result of a European-led effort begun in the mid-1980s. The first genome sequence for an archaeon, Methanococcus jannaschii, was completed in 1996, again by The Institute for Genomic Research.

The development of new technologies has made genome sequencing dramatically cheaper and easier, and the number of complete genome sequences is growing rapidly. The US National Institutes of Health maintains one of several comprehensive databases of genomic information.[8] Among the thousands of completed genome sequencing projects include those for rice, a mouse, the plant Arabidopsis thaliana, the puffer fish, and the bacteria E. coli. In December 2013, scientists first sequenced the entire genome of a Neanderthal, an extinct species of humans. The genome was extracted from the toe bone of a 130,000-year-old Neanderthal found in a Siberian cave.[9][10]

New sequencing technologies, such as massive parallel sequencing have also opened up the prospect of personal genome sequencing as a diagnostic tool, as pioneered by Manteia Predictive Medicine. A major step toward that goal was the completion in 2007 of the full genome of James D. Watson, one of the co-discoverers of the structure of DNA.[11]

This page was last edited on 20 July 2018, at 16:53 (UTC).
Reference: under CC BY-SA license.

Related Topics

Recently Viewed