Diesel engine

The diesel engine (also known as a compression-ignition or CI engine), named after Rudolf Diesel, is an internal combustion engine in which ignition of the fuel which is injected into the combustion chamber is caused by the elevated temperature of the air in the cylinder due to mechanical compression (adiabatic compression). Diesel engines work by compressing only the air. This increases the air temperature inside the cylinder to such a high degree that atomised diesel fuel that is injected into the combustion chamber ignites spontaneously. This contrasts with spark-ignition engines such as a petrol engine (gasoline engine) or gas engine (using a gaseous fuel as opposed to petrol), which use a spark plug to ignite an air-fuel mixture. In diesel engines, glow plugs (combustion chamber pre-warmers) may be used to aid starting in cold weather, or when the engine uses a lower compression-ratio, or both. The original diesel engine operates on the "constant pressure" cycle of gradual combustion and produces no audible knock.

The diesel engine has the highest thermal efficiency (engine efficiency) of any practical internal or external combustion engine due to its very high expansion ratio and inherent lean burn which enables heat dissipation by the excess air. A small efficiency loss is also avoided compared to two-stroke non-direct-injection gasoline engines since unburned fuel is not present at valve overlap and therefore no fuel goes directly from the intake/injection to the exhaust. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) can have a thermal efficiency that exceeds 50%.[1][2]

Diesel engines may be designed as either two-stroke or four-stroke cycles. They were originally used as a more efficient replacement for stationary steam engines. Since the 1910s they have been used in submarines and ships. Use in locomotives, trucks, heavy equipment and electricity generation plants followed later. In the 1930s, they slowly began to be used in a few automobiles. Since the 1970s, the use of diesel engines in larger on-road and off-road vehicles in the US increased. According to the British Society of Motor Manufacturing and Traders, the EU average for diesel cars accounts for 50% of the total sold, including 70% in France and 38% in the UK.[3]

The world's largest diesel engine put in service in 2006 is currently a Wärtsilä-Sulzer RTA96-C Common Rail marine diesel, which produces a peak power output of 84.42 MW (113,210 hp) at 102 rpm.[4][5]

The definition of a "Diesel" engine to many has become an engine that uses compression ignition. To some it may be an engine that uses heavy fuel oil. To others an engine that does not use spark ignition. However the original cycle proposed by Rudolf Diesel in 1892 was a constant temperature cycle (a cycle based on the Carnot theory) that would require much higher compression than what is needed for compression ignition. Diesel's idea was to compress the air so tightly that the temperature of the air would exceed that of combustion. In his 1892 US patent (granted in 1895) #542846 Diesel describes the compression required for his cycle:

In later years Diesel realized his original cycle would not work and he adopted the constant pressure cycle. Diesel describes the cycle in his 1895 patent application. Notice that there is no longer a mention of compression temperatures exceeding the temperature of combustion. Now all that is mentioned is the compression must be high enough for ignition.

History shows that the invention of the Diesel engine was not based solely on one man's idea, but was the culmination of many different ideas that were developed over time.

This page was last edited on 20 July 2018, at 16:44 (UTC).
Reference: https://en.wikipedia.org/wiki/Diesel_engine under CC BY-SA license.

Related Topics

Recently Viewed