Bird anatomy

Bird anatomy, or the physiological structure of birds' bodies, shows many unique adaptations, mostly aiding flight. Birds have a light skeletal system and light but powerful musculature which, along with circulatory and respiratory systems capable of very high metabolic rates and oxygen supply, permit the bird to fly. The development of a beak has led to evolution of a specially adapted digestive system. These anatomical specializations have earned birds their own class in the vertebrate phylum.

The bird skeleton is highly adapted for flight. It is extremely lightweight but strong enough to withstand the stresses of taking off, flying, and landing. One key adaptation is the fusing of bones into single ossifications, such as the pygostyle. Because of this, birds usually have a smaller number of bones than other terrestrial vertebrates. Birds also lack teeth or even a true jaw, instead having a beak, which is far more lightweight. The beaks of many baby birds have a projection called an egg tooth, which facilitates their exit from the amniotic egg, and that falls off once it has done its job.

Birds have many bones that are hollow (pneumatized) with criss-crossing struts or trusses for structural strength. The number of hollow bones varies among species, though large gliding and soaring birds tend to have the most. Respiratory air sacs often form air pockets within the semi-hollow bones of the bird's skeleton.

The bones of diving birds are often less hollow than those of non-diving species. Penguins, loons and puffins are without pneumatized bones entirely. Flightless birds, such as ostriches and emus, demonstrate osseous pneumaticity, possessing pneumatized femurs and, in the case of the emu, pneumatized cervical vertebrae.

Birds also have more cervical (neck) vertebrae than many other animals; most have a highly flexible neck consisting of 13-25 vertebrae. Birds are the only vertebrates to have fused clavicles (collarbone) (the furcula or wishbone) or a keeled sternum or breastbone. The keel of the sternum serves as an attachment site for the muscles used for flight or, similarly, for swimming, in penguins. Again, flightless birds, such as ostriches, which do not have highly developed pectoral muscles, lack a pronounced keel on the sternum. Swimming birds have a wide sternum, while walking birds have a long or high sternum and flying birds have a sternum width and height that are nearly equal.

Birds have uncinate processes on the ribs. These are hooked extensions of bone which help to strengthen the rib cage by overlapping with the rib behind them. This feature is also found in the tuatara (Sphenodon). They also have a greatly elongate tetradiate pelvis, similar to some reptiles. The hind limb has an intra-tarsal joint found also in some reptiles. There is extensive fusion of the trunk vertebrae as well as fusion with the pectoral girdle. They have a diapsid skull, as in reptiles, with a pre-lachrymal fossa (present in some reptiles). The skull has a single occipital condyle.

This page was last edited on 3 March 2018, at 15:14.
Reference: under CC BY-SA license.

Related Topics

Recently Viewed