Atmospheric entry

Atmospheric entry is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet or natural satellite. There are two main types of atmospheric entry: uncontrolled entry, such as the entry of astronomical objects, space debris or bolides; and controlled entry (or reentry) of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent and landing of spacecraft are collectively termed as EDL.

Atmospheric drag and aerodynamic heating can cause atmospheric breakup capable of completely disintegrating smaller objects. These forces may cause objects with lower compressive strength to explode.

Manned space vehicles must be slowed to subsonic speeds before parachutes or air brakes may be deployed. Such vehicles have kinetic energies typically between 50 and 1,800 megajoules, and atmospheric dissipation is the only way of expending the kinetic energy. The amount of rocket fuel required to slow the vehicle would be nearly equal to the amount used to accelerate it initially, and it is thus highly impractical to use retro rockets for the entire Earth re-entry procedure. While the high temperature generated at the surface of the heat shield is due to adiabatic compression, the vehicle's kinetic energy is ultimately lost to gas friction (viscosity) after the vehicle has passed by. Other smaller energy losses include black body radiation directly from the hot gases and chemical reactions between ionized gases.

Ballistic warheads and expendable vehicles do not require slowing at re-entry, and in fact, are made streamlined so as to maintain their speed.

For Earth, atmospheric entry occurs below the Kármán line at an altitude of more than 100 km (62 mi) above the surface, while at Venus atmospheric entry occurs at 250 km (155 mi) and at Mars atmospheric entry at about 80 km (50 mi). Uncontrolled, objects accelerate through the atmosphere at extreme velocities under the influence of Earth's gravity. Most controlled objects enter at hypersonic speeds due to their suborbital (e.g., intercontinental ballistic missile reentry vehicles), orbital (e.g., the Soyuz), or unbounded (e.g., meteors) trajectories. Various advanced technologies have been developed to enable atmospheric reentry and flight at extreme velocities. An alternative low velocity method of controlled atmospheric entry is buoyancy which is suitable for planetary entry where thick atmospheres, strong gravity or both factors complicate high-velocity hyperbolic entry, such as the atmospheres of Venus, Titan and the gas giants.

The concept of the ablative heat shield was described as early as 1920 by Robert Goddard: "In the case of meteors, which enter the atmosphere with speeds as high as 30 miles (48 km) per second, the interior of the meteors remains cold, and the erosion is due, to a large extent, to chipping or cracking of the suddenly heated surface. For this reason, if the outer surface of the apparatus were to consist of layers of a very infusible hard substance with layers of a poor heat conductor between, the surface would not be eroded to any considerable extent, especially as the velocity of the apparatus would not be nearly so great as that of the average meteor."

This page was last edited on 21 April 2018, at 16:14.
Reference: https://en.wikipedia.org/wiki/Atmospheric_entry under CC BY-SA license.

Related Topics

Recently Viewed