Agent-based model

Screenshot of an agent-based modeling software program
An agent-based model (ABM) is a class of computational models for simulating the actions and interactions of autonomous agents (both individual or collective entities such as organizations or groups) with a view to assessing their effects on the system as a whole. It combines elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. Monte Carlo methods are used to introduce randomness. Particularly within ecology, ABMs are also called individual-based models (IBMs), and individuals within IBMs may be simpler than fully autonomous agents within ABMs. A review of recent literature on individual-based models, agent-based models, and multiagent systems shows that ABMs are used on non-computing related scientific domains including biology, ecology and social science. Agent-based modeling is related to, but distinct from, the concept of multi-agent systems or multi-agent simulation in that the goal of ABM is to search for explanatory insight into the collective behavior of agents obeying simple rules, typically in natural systems, rather than in designing agents or solving specific practical or engineering problems.

Agent-based models are a kind of microscale model that simulate the simultaneous operations and interactions of multiple agents in an attempt to re-create and predict the appearance of complex phenomena. The process is one of emergence from the lower (micro) level of systems to a higher (macro) level. As such, a key notion is that simple behavioral rules generate complex behavior. This principle, known as K.I.S.S. ("Keep it simple, stupid"), is extensively adopted in the modeling community. Another central tenet is that the whole is greater than the sum of the parts. Individual agents are typically characterized as boundedly rational, presumed to be acting in what they perceive as their own interests, such as reproduction, economic benefit, or social status, using heuristics or simple decision-making rules. ABM agents may experience "learning", adaptation, and reproduction.

Most agent-based models are composed of: (1) numerous agents specified at various scales (typically referred to as agent-granularity); (2) decision-making heuristics; (3) learning rules or adaptive processes; (4) an interaction topology; and (5) an environment. ABMs are typically implemented as computer simulations, either as custom software, or via ABM toolkits, and this software can be then used to test how changes in individual behaviors will affect the system's emerging overall behavior.

The idea of agent-based modeling was developed as a relatively simple concept in the late 1940s. Since it requires computation-intensive procedures, it did not become widespread until the 1990s.

The history of the agent-based model can be traced back to the Von Neumann machine, a theoretical machine capable of reproduction. The device von Neumann proposed would follow precisely detailed instructions to fashion a copy of itself. The concept was then built upon by von Neumann's friend Stanislaw Ulam, also a mathematician; Ulam suggested that the machine be built on paper, as a collection of cells on a grid. The idea intrigued von Neumann, who drew it up—creating the first of the devices later termed cellular automata. Another advance was introduced by the mathematician John Conway. He constructed the well-known Game of Life. Unlike von Neumann's machine, Conway's Game of Life operated by tremendously simple rules in a virtual world in the form of a 2-dimensional checkerboard.

One of the earliest agent-based models in concept was Thomas Schelling's segregation model, which was discussed in his paper "Dynamic Models of Segregation" in 1971. Though Schelling originally used coins and graph paper rather than computers, his models embodied the basic concept of agent-based models as autonomous agents interacting in a shared environment with an observed aggregate, emergent outcome.

This page was last edited on 15 April 2018, at 21:00.
Reference: https://en.wikipedia.org/wiki/Agent-based_model under CC BY-SA license.

Related Topics

Recently Viewed